## UNIVERSITI MALAYSIA PERLIS

Peperiksaan Pertengahan Semester II Sesi Akademik 2019/2020

# DKT 226 - Basic Communication Engineering [Asas Kejuruteraan Perhubungan]

Masa: 1 Jam 30 Minit

Answer ALL questions.

#### **QUESTION 1**

- (a) Define each of the following:
  - i) Information
  - ii) Noise
  - iii) Electronic communication system

(3 Marks)

(b) Briefly explain the elements of communications systems.

(6 Marks)

- (c) A student uses equipment in communication lab to measure the output power for an AM receiver radio. The AM receiver radio comprises of an amplifier, a filter and a mixer with absolute power gain of  $A_{p1} = 180$ ,  $A_{p2} = 0.5$  and  $A_{p3} = 65$  respectively. Given the input power,  $P_{in} = 29$  dBm. Determine:
  - (i) The input power, P<sub>in</sub> in mW.

(1 Mark)

(ii) The overall gain, APT in dB for the AM receiver.

(2 Marks)

(iii) The output power, Pout in watts and dBm.

(2 Marks)

## QUESTION 2

Differentiate coherent and non-coherent receivers. (a)

(4 Marks)

- (b) In TV receivers, the antenna is often mounted on a tall mast and a long lossy cable is used to connect the antenna and the receiver. In order to overcome the effect of the lossy cable, a pre-amplifier is mounted on the antenna as shown in Figure 1. Typical values of the parameters are also shown in Figure 1. Determine:
  - The overall power gain, APT in dB. **(i)**

(I Mark)

The overall noise figure of the system (ii)

(4 Marks)



Figure 1

- One input to a conventional AM modulator is a 250 kHz carrier with amplitude of 18 (c) and the second input is a 30 kHz modulating signal that is of sufficient amplitude to cause a change in the output wave of \$15Vp. Determine
  - (i) Upper and lower side frequencies.

(2 Marks)

Modulation index and percentage modulation. (ii)

(2 Marks)

Peak amplitude of the modulated carrier and upper and lower side frequency (m) voltages

G Marks)

Bandwidth of the AM waveform (iv)

(I Mark)

Draw the output frequency spectrum. (v)

(2 Marks)

### **QUESTION 3**

(iv)

| QUE | SITO                                                                                                                                                                                                                                                | 13                                                                                                                                           |                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| (a) | For an electronic device operating at a temperature of $25^{\circ}$ C with a bandwidth of 25 kHz, determine:<br>(Given constant k = $1.38 \times 10^{-23}$ joules/Kelvin)                                                                           |                                                                                                                                              |                               |
|     | (i)                                                                                                                                                                                                                                                 | Thermal noise power, P <sub>N</sub> in watts and dBm                                                                                         | (2 Marks)                     |
|     | (ii)                                                                                                                                                                                                                                                | RMS noise voltage, $V_N$ for a 150 $\Omega$ internal resistance and 50 $\Omega$ load                                                         | resistance.<br>(2 Marks)      |
| (b) | Give                                                                                                                                                                                                                                                | AM superheterodyne receiver using high-side injection with a preselecen the intermediate frequency (IF) is 450 kHz and the RF carrier rmine: | tor Q of 100.<br>is 1000 kHz, |
|     | (i)                                                                                                                                                                                                                                                 | Local oscillator frequency, f <sub>LO</sub> .                                                                                                | (2 Marks)                     |
|     | (ii)                                                                                                                                                                                                                                                | Image frequency, f <sub>IM</sub> .                                                                                                           | (2 Marks)                     |
|     | (iii)                                                                                                                                                                                                                                               | Image frequency rejection ratio (IFRR).                                                                                                      | (2 Marks)                     |
| (c) | For an AM Double-sideband full-carrier (DSB-FC) with a peak unmodulated carrier voltage, $V_c = 30V_p$ and a frequency of 200 kHz, a load resistor of $40\Omega$ , frequency of modulating signal of 20 kHz and modulation index of 0.4, determine: |                                                                                                                                              |                               |
|     | (i)                                                                                                                                                                                                                                                 | The amount of carrier power, P <sub>c</sub> .                                                                                                | (2 Marks)                     |
|     | (ii)                                                                                                                                                                                                                                                | The amount of power using Double-sideband suppressed-carrier (DS)                                                                            | B-SC).<br>(2 Marks)           |
|     | (iii)                                                                                                                                                                                                                                               | The amount of power using Single-sideband full-carrier (SSB-FC).                                                                             | (1 Mark)                      |

The percentage of power saving of SSB-FC compares to DSB-FC.

(2 Marks)