## CHAPTER 1:

## First Order Differential Equations: Types of Equations

1) Solve the following differential equation by using method of separation variables.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y}{(x-1)(x+1)} \\
& \text { Ans: } y=A\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}}
\end{aligned}
$$

2) Solve the following differential equation by using homogeneous equation method.

$$
\begin{aligned}
& 2 x^{2} \frac{d y}{d x}=y^{2}+x^{2} \\
& \text { Ans: } \frac{-2 x}{(y-x)}=\ln x+C
\end{aligned}
$$

3) Solve the following differential equation by using linear equation method.

$$
\frac{d y}{d x}+3 y=e^{4 x}
$$

$$
\text { Ans: } y=\frac{e^{3 x}}{7}+C e^{-3 x}
$$

4) Solve the following differential equation by using exact equation method.

$$
\begin{aligned}
& \left(2 x^{2} y-\frac{1}{2} y\right) d y+\left(2 x y^{2}+4\right) d x=0 \\
& \text { Ans: } x^{2} y^{2}+4 x-\frac{y^{2}}{4}=B \text { where } B=C-A
\end{aligned}
$$

## Application of First Order Differential Equation

1) In year 2000, the population of crocodile in Malaysia was estimated as 200. After ten years, the population has grown to be 500 . Estimate the population of the crocodile in year 2017.
2) In 1990, the Department of Natural Resources releases 1000 fish into a lake. In 1997, the population of the fish was estimated to be 3000 . By assuming no other factor affect the population, estimate the number of fish in year 2000.

Ans: 4803
3) The half-life of Uranium- 232 is 68.9 years. How much of a 100 g sample is present after 250 years?

Ans: $P(250)=8.0058$

## CHAPTER 2:

Second Order Linear Differential Equations: Homogeneous Equations

1) Find the solutions of differential equations :
a) $\frac{d^{2} y}{d x^{2}}+9 \frac{d y}{d x}=0, y(0)=2, y^{\prime}(0)=-3 \quad$ Ans : $y=2 \cos (3 x)-\sin (3 x)$
b) $16 \frac{d^{2} y}{d x^{2}}-40 \frac{d y}{d x}+25 y=0, y(0)=3, y^{\prime}(0)=-\frac{9}{4} \quad$ Ans : $y=(3-6 x) e^{\frac{5}{4} x}$

## Second Order Linear Differential Equations: Nonhomogeneous Equations

2) By using the method of undetermined coefficient, solve the following differential equation.
a) $2 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}-3 y=5 x+1, \quad y(0)=3, y^{\prime}(0)=1 \quad$ Ans : $y=\frac{1}{9} e^{-3 x}+6 e^{\frac{1}{2} x}-\frac{5}{3} x-\frac{28}{9}$
b) $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=2 x^{2}$

$$
\text { Ans: } y=(A+B x) e^{2 x}+\frac{1}{2} x^{2}+x+\frac{3}{4}
$$

## CHAPTER 3:

Laplace Transform

1) Find the Laplace transform of the following functions.
a) $f(t)=e^{3 t} \sin 6 t$
Ans: $F(s)=\frac{6}{s^{2}-6 s+45}$
b) $f(t)=e^{-2 t} \cosh 7 t$
Ans: $F(s)=\frac{(s+2)}{s^{2}+4 s-45}$
c) $f(t)=e^{4 t} \sinh 8 t$
Ans: $F(s)=\frac{8}{s^{2}-8 s-48}$
d) $f(t)=t \sin 3 t$
Ans: $F(s)=\frac{6 s}{\left(s^{2}+9\right)^{2}}$
2) Find the inverse Laplace transforms of the following functions.
a) $F(s)=\frac{5 s}{s^{2}+9}$

Ans: $f(t)=5 \cos 3 t$
b) $F(s)=\frac{3+s}{s^{2}-16}$

Ans: $f(t)=\frac{3}{4} \sinh 4 t+\cosh 4 t$
c) $F(s)=\frac{s-10}{s^{2}+25}$

Ans: $f(t)=\cos 5 t+2 \sin 5 t$
d) $F(s)=\frac{s+5}{s^{2}-4}$

Ans: $f(t)=\cosh 2 t+\frac{5}{2} \sinh 4 t$
e) $F(s)=\frac{s+1}{(s-4)(s+3)}$

Ans: $f(t)=\frac{5}{7} e^{4 t}+\frac{2}{7} e^{-3 t}$

## Laplace Transforms: Initial Value Problems

1) Given the following initial value problem,

$$
y^{\prime \prime}+y^{\prime}-6 y=5 \quad ; \quad y(0)=2 ; \quad y^{\prime}(0)=3
$$

a) Show the Laplace transforms for the initial value problem above is given by

$$
Y(s)=\frac{2 s^{2}+5 s+5}{s(s+3)(s-2)}
$$

b) By using part 1a), solve the initial value problem using the Laplace transforms method.

$$
\text { Ans: } y(t)=-\frac{5}{6}+\frac{8}{15} e^{-3 t}+\frac{23}{10} e^{2 t}
$$

Table of Laplace Transforms

| $f(t)$ | $\mathcal{L}\{f(t)\}=F(s)$ | $f(t)$ | $\mathcal{L}\{f(t)\}=F(s)$ |
| :---: | :---: | :---: | :---: |
| $a$ | $\frac{a}{s}$ | $e^{a t} \sin b t$ | $\frac{b}{(s-a)^{2}+b^{2}}$ |
| $t^{n}, n=1,2,3, .$. | $\frac{n!}{s^{n+1}}$ | $e^{a t} \cos b t$ | $\frac{s-a}{(s-a)^{2}+b^{2}}$ |
| $e^{a t}$ | $\frac{1}{s-a}$ | $t^{n} e^{a t}$ | $\frac{n!}{(s-a)^{n+1}}$ |
| $\sin a t$ | $\frac{a}{s^{2}+a^{2}}$ | $t^{n} f(t)$ | $(-1)^{n} \frac{d^{n}}{d s^{n}}[F(s)]$ |
| $\cos a t$ | $\frac{s}{s^{2}+a^{2}}$ | $e^{a t} f(t)$ | $F(s-a)$ |
| $\sinh a t$ | $\frac{a}{s^{2}-a^{2}}$ | $y^{\prime}(t)$ | $s Y(s)-y(0)$ |
| $\cosh a t$ | $\frac{s}{s^{2}-a^{2}}$ | $y^{\prime \prime}(t)$ | $s^{2} Y(s)-s y(0)-y^{\prime}(0)$ |


| First Shift Property <br> of Inverse laplace <br> transform | $L^{-1}\{F(s-a)\}=e^{a t} L^{-1}\{F(s)\}$ |
| :---: | :---: |
|  | $=e^{a t} f(t)$ |

