CHAPTER 1:

First Order Differential Equations: Types of Equations

1) Solve the following differential equation by using method of separation variables.

$$
\begin{aligned}
& \frac{x+4}{y^{2}+3}=x^{2} y \frac{d y}{d x} \\
& \quad \text { Ans: } \frac{y^{5}}{5}+\frac{3 y^{2}}{2}=\ln x-\frac{4}{x}+C
\end{aligned}
$$

2) Solve the following differential equation by using homogeneous equation method.

$$
\frac{d y}{d x}=\frac{y^{2}}{x y-4 x^{2}}
$$

$$
\text { Ans: } y^{4}=A e^{\frac{y}{x}}
$$

3) Solve the following differential equation by using linear equation method.

$$
\begin{aligned}
& x \frac{d y}{d x}+y=x e^{x} \\
& \text { Ans: } y=e^{x}-\frac{e^{x}}{x}+\frac{C}{x}
\end{aligned}
$$

4) Solve the following differential equation by using exact equation method.

$$
\begin{aligned}
\left(3 x^{2} y-2 y\right) \frac{d y}{d x}= & -\left(3 x y^{2}+2 x\right) \\
& \text { Ans: } \frac{3 x^{2} y^{2}}{2}+x^{2}-y^{2}=B \text { where } B=C-A
\end{aligned}
$$

Application of First Order Differential Equation

1) A population growth and decay is given by the equation, $\frac{d P}{d t}=k P(t)$ where $P(t)$ is the population at time t and k is a constant. Show that the general solution to the equation is $P(t)=A e^{k t}$ where A is a constant.
2) Around thousands citizens are living in a small country and this amount increased to 450 thousands within 2 years. The population growth at rate that is proportional to the number of the citizen at that time. Assume that initial citizen is 50 thousand, determine the number of citizen after 5 years.

Ans: 12150
3) A biologist discovered a new species of bacteria. At time $t=0$, they put 100 bacteria into what he has determined to be a favorable growth medium. Ten hour leter, they had identified 450 bacteria exist inside the growth medium. Estimate the population of the bacteria after 25 hours and 40 hours.

Ans: 41006

CHAPTER 2:

Second Order Linear Differential Equations: Homogeneous Equations

1) Find the solutions of differential equations:
a) $3 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0, \quad y(0)=1, y^{\prime}(0)=-1$ Ans: $y=-2+3 e^{-\frac{1}{3} x}$
b) $16 \frac{d^{2} y}{d x^{2}}-40 \frac{d y}{d x}+25 y=0, \quad y(0)=3, y^{\prime}(0)=-\frac{9}{4}$

Ans: $y=(3-6 x) e^{\frac{5}{4} x}$

Second Order Linear Differential Equations: Nonhomogeneous Equations

2) By using the method of undetermined coefficient, solve the following differential equation.
a) $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=2 e^{-2 x}, y(0)=1, y^{\prime}(0)=-2$ Ans: $y=e^{-2 x}(2-\cos x)$
b) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=5 x+1, \quad y(0)=1, y^{\prime}(0)=2$ Ans : $y=e^{-x}\left(3 \cos x+\frac{5}{2} \sin x\right)+\frac{5}{2} x-2$

CHAPTER 3:

Laplace Transform

1) Find the Laplace transform of the following functions.
a) $f(t)=t \sinh 2 t$

Ans: $F(s)=\frac{4 s}{\left(s^{2}-4\right)^{2}}$
b) $f(t)=t \cos 5 t$

Ans: $F(s)=\frac{s^{2}-25}{\left(s^{2}+25\right)^{2}}$
c) $f(t)=2 t e^{4 t}$

Ans: $F(s)=\frac{2}{(s-4)^{2}}$
d) $f(t)=5 t^{2} e^{-t}$

Ans: $F(s)=\frac{10}{(s+1)^{3}}$
2) Find the inverse Laplace transforms of the following functions.
a) $\quad F(s)=\frac{4}{s^{3}}$
b) $\quad F(s)=\frac{1}{s^{7}}$

Ans: $f(t)=2 t^{2}$
Ans: $f(t)=\frac{1}{720} t^{6}$
c) $F(s)=-\frac{2}{s^{6}}$

Ans: $f(t)=-\frac{1}{60} t^{5}$
d) $F(s)=\frac{2 s}{s^{2}-49}$

Ans: $f(t)=2 \cosh 7 t$
e) $F(s)=\frac{3}{s^{2}+64}$

Ans: $f(t)=\frac{3}{8} \sin 8 t$

Laplace Transforms: Initial Value Problems

1) Use the method of Laplace Transforms to find the solution of the following initial value problems.
a) $\frac{d y}{d t}+2 y=0 \quad ; \quad y(0)=2$ Ans: $y(t)=2 e^{-2 t}$
b) $y^{\prime}-y=e^{-t} \quad ; \quad y(0)=-1$ Ans: $y(t)=-\frac{1}{2} e^{t}-\frac{1}{2} e^{-t}$
c) $y^{\prime}+y=1 \quad ; \quad y(0)=1$

Ans: $y(t)=1$
d) $2 y^{\prime}+y=t \quad ; \quad y(0)=2$

Ans: $y(t)=-2+t+4 e^{-\frac{1}{2} t}$

Table of Laplace Transforms

$f(t)$	$\mathcal{L}\{f(t)\}=F(s)$	$f(t)$	$\mathcal{L}\{f(t)\}=F(s)$
a	$\frac{a}{s}$	$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}$
$t^{n}, n=1,2,3, .$.	$\frac{n!}{s^{n+1}}$	$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$e^{a t}$	$\frac{1}{s-a}$	$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$
$\sin a t$	$\frac{a}{s^{2}+a^{2}}$	$t^{n} f(t)$	$(-1)^{n} \frac{d^{n}}{d s^{n}}[F(s)]$
$\cos a t$	$\frac{s}{s^{2}+a^{2}}$	$e^{a t} f(t)$	$F(s-a)$
$\sinh a t$	$\frac{a}{s^{2}-a^{2}}$	$y^{\prime}(t)$	$s Y(s)-y(0)$
$\cosh a t$	$\frac{s}{s^{2}-a^{2}}$	$y^{\prime \prime}(t)$	$s^{2} Y(s)-s y(0)-y^{\prime}(0)$

First Shift Property of Inverse laplace transform	$L^{-1}\{F(s-a)\}=e^{a t} L^{-1}\{F(s)\}$
	$=e^{a t} f(t)$

