

<u>CHAPTER 1:</u> <u>First Order Differential Equations: Types of Equations</u>

1) Solve the following differential equation by using method of separation variables.

$$\frac{x+4}{y^2+3} = x^2 y \frac{dy}{dx}$$
Ans: $\frac{y^5}{5} + \frac{3y^2}{2} = \ln x - \frac{4}{x} + C$

2) Solve the following differential equation by using homogeneous equation method.

$$\frac{dy}{dx} = \frac{y^2}{xy - 4x^2}$$
Ans: $y^4 = Ae^{\frac{y}{x}}$

3) Solve the following differential equation by using linear equation method.

$$x\frac{dy}{dx} + y = xe^{x}$$

Ans: $y = e^{x} - \frac{e^{x}}{x} + \frac{C}{x}$

4) Solve the following differential equation by using exact equation method.

$$(3x^{2}y - 2y)\frac{dy}{dx} = -(3xy^{2} + 2x)$$

Ans: $\frac{3x^{2}y^{2}}{2} + x^{2} - y^{2} = B$ where $B = C - A$

Application of First Order Differential Equation

1) A population growth and decay is given by the equation, $\frac{dP}{dt} = kP(t)$ where P(t) is the population at time *t* and *k* is a constant. Show that the general solution to the equation is $P(t) = Ae^{kt}$ where *A* is a constant.

2) Around thousands citizens are living in a small country and this amount increased to 450 thousands within 2 years. The population growth at rate that is proportional to the number of the citizen at that time. Assume that initial citizen is 50 thousand, determine the number of citizen after 5 years.

Ans: 12150

3) A biologist discovered a new species of bacteria. At time t = 0, they put 100 bacteria into what he has determined to be a favorable growth medium. Ten hour leter, they had identified 450 bacteria exist inside the growth medium. Estimate the population of the bacteria after 25 hours and 40 hours.

Ans: 41006

<u>CHAPTER 2:</u> <u>Second Order Linear Differential Equations: Homogeneous Equations</u>

1) Find the solutions of differential equations :

a)
$$3\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$
, $y(0) = 1$, $y'(0) = -1$
Ans: $y = -2 + 3e^{-\frac{1}{3}x}$

b)
$$16\frac{d^2y}{dx^2} - 40\frac{dy}{dx} + 25y = 0$$
, $y(0) = 3$, $y'(0) = -\frac{9}{4}$ Ans: $y = (3-6x)e^{\frac{5}{4}x}$

Second Order Linear Differential Equations: Nonhomogeneous Equations

2) By using the method of undetermined coefficient, solve the following differential equation.

a)
$$\frac{d^2 y}{dx^2} + 4\frac{dy}{dx} + 5y = 2e^{-2x}$$
, $y(0) = 1$, $y'(0) = -2$ Ans: $y = e^{-2x}(2 - \cos x)$

b)
$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + 2y = 5x + 1$$
, $y(0) = 1$, $y'(0) = 2$ Ans: $y = e^{-x}(3\cos x + \frac{5}{2}\sin x) + \frac{5}{2}x - 2$

<u>CHAPTER 3:</u> Laplace Transform

- 1) Find the Laplace transform of the following functions.
- a) $f(t) = t \sinh 2t$ b) $f(t) = t \cos 5t$ c) $f(t) = 2te^{4t}$ d) $f(t) = 5t^2e^{-t}$ Ans: $F(s) = \frac{4s}{(s^2 - 4)^2}$ Ans: $F(s) = \frac{s^2 - 25}{(s^2 + 25)^2}$ Ans: $F(s) = \frac{2}{(s - 4)^2}$ Ans: $F(s) = \frac{10}{(s + 1)^3}$
- 2) Find the inverse Laplace transforms of the following functions.

a)
$$F(s) = \frac{4}{s^3}$$

b) $F(s) = \frac{1}{s^7}$
c) $F(s) = -\frac{2}{s^6}$
d) $F(s) = \frac{2s}{s^2 - 49}$
e) $F(s) = \frac{3}{s^2 + 64}$
Ans: $f(t) = 2t^2$
Ans: $f(t) = \frac{1}{720}t^6$
Ans: $f(t) = -\frac{1}{60}t^5$
Ans: $f(t) = 2\cosh 7t$
Ans: $f(t) = \frac{3}{8}\sin 8t$

Laplace Transforms: Initial Value Problems

1) Use the method of Laplace Transforms to find the solution of the following initial value problems.

a)
$$\frac{dy}{dt} + 2y = 0$$
; $y(0) = 2$
b) $y' - y = e^{-t}$; $y(0) = -1$
c) $y' + y = 1$; $y(0) = 1$
Ans: $y(t) = -\frac{1}{2}e^{t} - \frac{1}{2}e^{-t}$
Ans: $y(t) = 1$

d)
$$2y' + y = t$$
; $y(0) = 2$

Ans: $y(t) = -2 + t + 4e^{-\frac{1}{2}t}$

Table of Laplace Transforms

f(t)	$\mathcal{L}{f(t)} = F(s)$	f(t)	$\mathcal{L}{f(t)} = F(s)$
а	$\frac{a}{s}$	$e^{at}\sin bt$	$\frac{b}{\left(s-a\right)^2+b^2}$
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
<i>e</i> ^{<i>at</i>}	$\frac{1}{s-a}$	$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
sin at	$\frac{a}{s^2 + a^2}$	$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} [F(s)]$
cosat	$\frac{s}{s^2 + a^2}$	$e^{at}f(t)$	F(s-a)
sinh at	$\frac{a}{s^2 - a^2}$	y'(t)	sY(s)-y(0)
cosh <i>at</i>	$\frac{s}{s^2 - a^2}$	y''(t)	$s^2Y(s) - sy(0) - y'(0)$
First Shift Property $L^{-1}\{F(s-a)\} = e^{at}L^{-1}\{F(s)\}$			

First Shift Property	$L^{-1}\{F(s-a)\} = e^{at}L^{-1}\{F(s)\}$	
of Inverse laplace		
transform	$=e^{at}f\left(t ight)$	