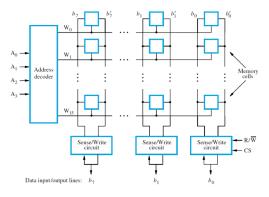
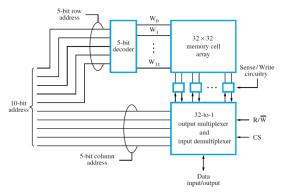
DKT217 COMPUTER SYSTEM TOPUP MTE DATE : FRIDAY 10 APRIL 2020 TIME : 9.30am ~ 11.00am DURATION : 1 HOUR 30 MINUTES UPLOAD CUT-OFF : 11.02am

ANSWER ALL QUESTIONS


QUESTION 1

a) A 1K-bit memory cell can be organized into 128x8 or 1024x1 arrays. Draw the block diagram for both memory organization.

(5 marks)


SOLUTION

128 x 8 array organization (8-bit output)

Using 7 to 128 bit decoder

1024 x 1 array organization (1-bit output)

[SULIT]

QUESTION 2

An 8-bit data E8H is to be stored into the memory.

- a) Find the Kin code when the data is stored into the memory.
- b) Find the Kout code when the data is taken out from the memory if the data becomes ECH.
- c) Determine the syndrome which proves the location of the faulty bit from the 8-bit data.

SOLUTION

Finding K-bits :

 $2^{K} - 1 \ge M + K \rightarrow$ try and error we get K=4 bits when M is 8.

So:

Locations in	12	11	10	9	8	7	6	5	4	3	2	1
decimal and binary	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
M & K bit positions	M7	M6	M5	M4	Кз	M3	M2	M1	K ₂	M0	K1	K ₀
Data In E8H	1	1	1	0		1	0	0		0		
Data Out ECH	1	1	1	0		1	1	0		0		

a) Finding Kin code values :

$K0 = M0 \oplus M1 \oplus M3 \oplus M4 \oplus M6$	=> 0
$K1 = M0 \oplus M2 \oplus M3 \oplus M5 \oplus M6$	=> 1
$K2 = M1 \oplus M2 \oplus M3 \oplus M7$	=> 0
K3 = M4 \oplus M5 \oplus M6 \oplus M7	=> 1

Thus, the exact data E8H (11101000B) to be stored into memory is EC2H (111011000010B), but the question only asks for the Kin code which is **1010B**.

b) Finding Kout code values :

$K0=M0\oplusM1\oplusM3\oplusM4\oplusM6$	=> 0
$K1 = M0 \oplus M2 \oplus M3 \oplus M5 \oplus M6$	=> 0
$K2 = M1 \oplus M2 \oplus M3 \oplus M7$	=> 1
$K3 = M4 \oplus M5 \oplus M6 \oplus M7$	=> 1
in the event date FCU (11101100	

Thus, the exact data ECH (11101100B) to be loaded from memory is EE8H (111011101000B), but the question only asks for the Kout code which is **1100B**.

c) Getting the syndrome which points to location of the faulty bit :

Kin	1010
<u>⊕Kout</u>	<u>1100</u>
Syndrome	0110 \leftarrow this is the table location that refers to M2 bit

The syndrome points to M2 which shows the value differences when storing (0) and when loading (1).

[5 marks]

[SULIT]

QUESTION 3

- a) Assume a computer has the memory with the size of 16MB and a cache size of 64KB that addresses at the byte level. If the computer's cache line can contain 16 bytes, determine the format sizes of the following cache map :
 - (i) Direct Mapped Cache
 - (ii) Associative Mapped Cache
 - (iii) 2-way Set Associative Mapped Cache
- b) Assuming a memory has 128 blocks and a cache consists of 32 lines. Determine where the 78th memory block will be located in the cache for :
 - (i) Direct Mapped Cache
 - (ii) Associative Mapped Cache
 - (iii) 4-way Set Associative Mapped Cache

SOLUTION

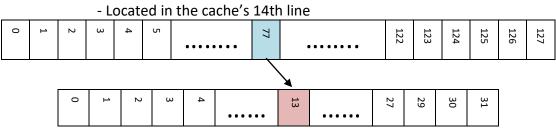
a) Memory size is 16MB, expressed in the power of 2 is 2²⁴, Cache size is 64KB, expressed in the power of 2 is 2¹⁶, Cache line size is 16B, expressed in the power of 2 is 2⁴,

(i)	Direct Mapped Ca - Total addressab - Cache line size, v - Total addressab - Addressable cac - Block format Tag, s-r 8	le bits, s+w = 24 w = 4 le cache lines, r+v	v = 16 Size, w 4		
(ii)	Associative Mapped Cache				

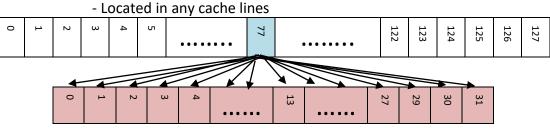
- Total addressable bits, s+w = 24
- Cache line size, w = 4
- No addressable cache lines needed, just total tag, s
- Block format

24 bit (s+w)

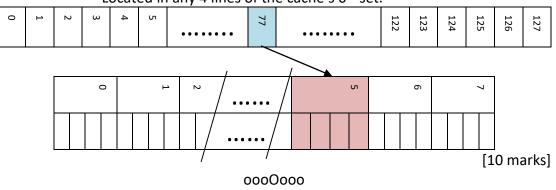
Tag, s	Size, w
20	4


- (iii) 2-way Set Associative Mapped Cache
 - Total addressable bits, s+w = 24
 - Cache line size, w = 4
 - Total addressable cache lines, r+w = 16
 - X-way addressable, 2^k, k =1
 - Addressable set bits, d = r-1 = 11
 - Block format

21	hit	
24	DIL	(s+w)


Tag, s-d	Set, d	Size, w
9	11	4

- b) Memory blocks = 128
 Cache lines = 32
 Location for memory block 78 inside the cache using :
 - (i) Direct Mapped



(ii) Associative Mapped

(iii) 4-way Set Associative Mapped
 Located in any 4 lines of the cache's 6th set.

[SULIT]