UNIVERSITI MALAYSIA PERLIS

Peperiksaan Pertengahan Semester I Sesi Akademik 2020/2021

DKT 215 – Signals and Systems Principles [Prinsip Isyarat dan Sistem]

Masa: 1 Jam 30 Minit

Answer ALL questions.

Question 1

- Find the Fourier transforms of the following signals: a)
 - i. x(t) = 1

 - ii. $x(t) = e^{j\omega_0 t}$ iii. $x(t) = e^{-j\omega_0 t}$
 - iv. $x(t) = \cos \omega_0 t$
 - v. $x(t) = \sin \omega_0 t$

(5 Marks)

Consider a continuous-time LTI system described by $\frac{dy(t)}{dt} + 2y(t) = x(t)$. Using the b) Fourier transform, find the output y(t) when $x(t) = e^{-t}u(t)$.

(5 Marks)

Question 2

Consider the system described by a) y'(t) + 2y(t) = x(t) + x'(t)Use Fourier transform to evaluate the impulse response of the system.

(4 Marks)

A stable and causal LTI system is given by the differential equation b) $\frac{d^2 y(t)}{dt^2} + 6 \frac{dy(t)}{dt} + 8 y(t) = 2x(t)$ Evaluate the frequency and impulse responses of this system.

(6 Marks)

SULIT

Question 3

a) A causal discrete-time LTI system is described by

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = x[n]$$

where x[n] and y[n] are the input and output of the system, respectively.

i. Determine the frequency response $H(\Omega)$ of the system.

(3 Marks)

ii. Find the impulse response h[n] of the system.

(3 Marks)

b) The LTI system is given by $y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n]$ and let the input to this system be $x[n] = \left(\frac{1}{4}\right)^n u[n]$. Find the inverse Fourier transform. (4 Marks)

- 40	
x(t)	Χ(ω)
$\delta(t)$	1
1	$2\pi\delta(\omega)$
$\delta(t-t_0)$	$e^{-j\omega t_0}$
$e^{j2\pi f_0 t}$	$2\pi\delta(\omega-\omega_0)$
$\cos(2\pi f_0 t)$	$\pi \Big[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \Big]$
$\sin(2\pi f_0 t)$	$-j\pi \left[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)\right]$
rect(t)	$\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$
sin <i>c</i> (<i>t</i>)	$rect\left(\frac{\omega}{2\pi}\right)$
$\Lambda(t)$	$\sin c^2 \left(\frac{\omega}{2\pi}\right)$
$sinc^{2}(t)$	$\Lambda\left(\frac{\omega}{2\pi}\right)$
$e^{-\alpha t}u(t), \alpha > 0$	$\frac{1}{\alpha + j\omega}$
$te^{-\alpha t}u(t), \alpha > 0$	$\frac{1}{(\alpha + j\omega)^2}$
$e^{-\alpha t }, \alpha > 0$	$\frac{2\alpha}{\left(\alpha^2 + (\omega)^2\right)}$
$e^{-\pi t^2}$	$e^{-\alpha f^2}$
sgn(t)	$\frac{2}{j\omega}$
<i>u</i> (<i>t</i>)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\frac{d}{dt}\delta(t)$	jω
$\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$	$\frac{1}{T_0}\sum_{n=-\infty}^{\infty}\delta\left(\omega-\frac{2\pi n}{T_0}\right)$

SULIT

x[n]	$X(\Omega)$
$\delta[n]$	1
$\delta[n-n_0]$	$e^{-j\Omega n_0}$
x[n] = 1	$2\pi\delta(\Omega), \Omega \leq \pi$
$e^{j\Omega_0 n}$	$2\pi\delta(\Omega-\Omega_0), \Omega , \Omega_0 \le \pi$
$\cos \Omega_0 n$	$\pi[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0)], \Omega , \Omega_0 \le \pi$
$\sin \Omega_0 n$	$-j\pi[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)], \Omega , \Omega_0 \leq \pi$
u[n]	$\pi\delta(\Omega) + \frac{1}{1 - e^{-j\Omega}}, \Omega \le \pi$
-u[-n-1]	$-\pi\delta(\Omega) + \frac{1}{1-e^{-j\Omega}}, \Omega \le \pi$
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\Omega}}$
$-a^{n}u[-n-1], a > 1$	$\frac{1}{1-ae^{-j\Omega}}$
$(n+1)a^{n}u[n], a < 1$	$\frac{1}{\left(1-ae^{-j\Omega}\right)^2}$
$a^{ n }, a < 1$	$\frac{1-a^2}{1-2a\cos\Omega+a^2}$
$x[n] = \begin{cases} 1 & n \le N_1 \\ 0 & n > N_1 \end{cases}$	$\frac{\sin\left[\Omega\left(N_{1}+\frac{1}{2}\right)\right]}{\sin(\Omega/2)}$
$\frac{\sin Wn}{\pi n}, 0 < W < \pi$	$X(\Omega) = \begin{cases} 1 & 0 \le \Omega \le W \\ 0 & W < \Omega \le \pi \end{cases}$
$\sum_{k=-\infty}^{\infty} \delta[n-kN_0]$	$\Omega_0 \sum_{k=-\infty}^{\infty} \delta(\Omega - k \Omega_0), \Omega_0 = \frac{2\pi}{N_0}$